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When the number of intensities greatly exceeds the number of unknown atomic

coordinates, the problem of obtaining a crystal structure from the intensities is

overdetermined and, for a sufficiently small structure, a chemically meaningful

solution can be found by direct methods. A difficulty in determining a structure

has been historically attributed to the non-uniqueness of such a structure owing

to multiple, or homometric, structures that yield the same set of intensities. The

number of homometric structures has not been rigorously analyzed owing to the

complexity of this problem. By using the method of elementary symmetric

polynomials with a new origin definition, one-dimensional crystal structures of a

small number of identical atoms (N < 5), determined from a minimum (N� 1) of

the lowest-resolution intensities, are enumerated. It is demonstrated that such a

structure is unique for N � 3. Interestingly, for N = 4, the structure can be

determined either uniquely or twofold ambiguously, depending on the intensity

values. These results suggest that, even for larger structures, a minimum set of

(or not many more) accurately measured intensities can yield a unique structure.

1. Introduction

In his pioneering study, Ott noted that in a typical diffraction

experiment the number of measured intensities Ihkl exceeds

the number of unknown atomic coordinates, 3N (Ott, 1927).

Therefore, the problem of obtaining atomic coordinates from

well measured diffraction intensities is overdetermined if the

data at a sufficiently high resolution are collected. Ott (1927)

and later Avrami (1939) demonstrated that the atomic coor-

dinates can, in principle, be obtained from the intensities

as a solution of a system of polynomial equations relating

diffraction intensities to atomic coordinates. Their approach

was deemed impractical at that time, owing to a cumbersome

structure of the polynomial system and the lack of computing

power needed to handle it. Since then, the algebraic approach

has been revisited, which resulted in a number of important

advances, including new methods of calculating the structure

from a subset of structure factors and evaluating the role of

experimental errors in structure determination (Cervellino &

Ciccariello, 1999, 2005; Pilz & Fischer, 2000, 1998; Fischer &

Pilz, 1997). However, a practical method of structure deter-

mination has not yet emerged. Nevertheless, the original ideas

put forth by Ott served as an impetus for development of the

direct methods (Sheldrick, 1984; Miller et al., 1993, 1994; Karle

& Hauptman, 1956), reviewed by Usón & Sheldrick (1999)

and Hauptman (1997). The direct methods are now the

preferred and time-tested technique for determining crystal

structures of small molecules and are gaining popularity in

determining heavy-atom substructures in macromolecular

crystallography (Dauter et al., 1999; Schneider & Sheldrick,

2002; Weeks et al., 2003). Owing to their probabilistic char-

acter, as a way of determining full structures, the direct

methods remain applicable to structures of at most a hundred

or so atoms in the asymmetric unit for which exceptionally

high resolution data (<1.2 Å) are available. This limitation, at

least in principle, can be overcome by the original determi-

nistic algebraic approach provided that (a) the number of

structure solutions of the above polynomial system is

reasonably small (e.g. not exponentially increasing with the

increasing number of atoms), (b) the solution(s) are stable

with respect to small changes in diffraction intensities (as

these are determined with some experimental uncertainty)

and, finally, as long as (a) and (b) hold, that (c) a practically

useful method of solving the above-mentioned high-order

polynomial system is found.

Because of an intrinsic limitation of a diffraction intensity

data set to yield interatomic distances in the structure of

interest, but not the atomic coordinates, even an ideal set of

intensities can, at best, produce multiple structures. Patterson

coined the term homometric to describe such structures, i.e.

structures that contain the same set of interatomic distances

(Patterson, 1939). This homometric ambiguity goes beyond
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congruent structures that are related by operations of reflec-

tion, rotation and translation, which preserve the interatomic

distances. A report of the existence of homometric structures

that are not congruent dates back to 1930 (Pauling & Shappell,

1930). In 1944, Patterson presented an elegant method of

generating such homometric one-dimensional structures made

up of identical atoms located at subsets of the vertices of an

equilateral polygon, or cyclotomic sets (Patterson, 1944).

Many examples of homometric structures and even methods

of constructing them have been reported since then (Grimm &

Baake, 2008; Rau et al., 1979; Zobetz, 1993; Bullough, 1964,

1961). Hauptman & Karle (1951) found an example where two

lowest resolution intensities (I1 and I2) yielded an ambiguous

one-dimensional crystal structure of three non-identical

atoms, but, when a higher-resolution intensity (I3) was

considered, this ambiguity was eliminated. Today, the problem

of reconstructing structures from interatomic distances is an

unsolved problem in several areas of physics and mathematics,

known to be notoriously difficult. Because a method for

enumerating homometric structures has not been developed,

some important questions that remain unanswered are: (i)

what is the number of structures that can be determined from

the minimum number of intensities, and (ii) can a unique

structure or a reasonably small number of structures be

determined in some cases? Here we use the method of

symmetric polynomials to enumerate one-dimensional crystal

structures of a small number (N < 5) of identical atoms

determined from N � 1 lowest-resolution diffraction inten-

sities.

2. Preliminaries

2.1. Defining unique solution in one-dimensional crystal
structure determination

We will consider a general one-dimensional crystal struc-

ture of N point atoms in the unit cell of size a = 1. Structure

factors Fh for this structure are

Fh � Fh

�� �� exp 2�i’hð Þ ¼
PN
j¼1

fj exp 2�ihxj

� �
;

h ¼ �1; . . . ;�1; 0; 1; . . . ;þ1; ð1Þ

where fj , xj are individual atomic scattering factors and their

unknown coordinates, respectively. Phases ’h are unknown,

which constitutes the phase problem. For a structure of equal

light atoms (without sulfur or heavier atoms and neglecting H

atoms), we will normalize fj = 1. Suppose a solution (x1, x2, . . . ,

xN) has been found based on a set of observed and properly

scaled reflection intensities Ih = I�h (Friedel’s law),

Ih ¼ Fh

�� ��2¼ PN
j;p¼1

exp 2�ih xj � xp

� �� �
¼ N þ

PN
j¼1
j<p

2 cos 2�h xj � xp

� �� �
; ð2Þ

then the reflection (or enantiomer) solution (�x1, �x2, . . . ,

�xN) relative to the same origin yields identical Ih. Distin-

guishing between these enantiomers is straightforward if the

chirality of the molecule of interest is known a priori, which,

for example, is the case with proteins, or experimentally by

using anomalous dispersion (resonant scattering). We will call

these two structures origin enantiomers. We will define then

that the system of equation (2) has a unique solution if it has

two and only two structure solutions (relative to a fixed origin)

that are origin enantiomers.

2.2. Defining an origin

Assuming that the total number of atoms in the unit cell, N,

is known, we will introduce �j = expð�2�ixjÞ. A set of �j ( j =

1, . . . , N) thus may be considered a solution of the structure.

Then

Fh ¼
PN
j¼1

�h
j and Ih ¼

PN
j;p¼1

�h
j �
�h
p : ð3Þ

In this notation the origin enantiomer of solution (�1; �2,

. . . ; �N) is (��1
1 ; �

�1
2 ; . . . ; ��1

N ). Because Ih = I�h (Friedel’s law)

and h = 0 is a trivial case, we will use only Ih. The origin can be

chosen arbitrarily; therefore, we will set it to coincide with the

center of gravity of all atoms in the unit cell so that
PN

j¼1 xj = 0,

i.e.

QN
q¼1

�h
q ¼ 1: ð4Þ

Note that, relative to this new origin, xj no longer lies between

0 and 1.

As we discussed above, if the origin is fixed, then a set of xj

and its enantiomer (�xj) define a unique structure. However,

the above choice of origin,
PN

j¼1 xj = 0, does not uniquely fix

the origin. Owing to crystal periodicity, for a structure of N

atoms there are N origins defined this way, since the ordered

atom numbering can be frame-shifted in N different ways and

each of such N frames defines its own origin. It can be readily

demonstrated that these N origins, each defined as the center

of gravity of the structure, are separated from each other by

1/N. The origin shift by 1/N is equivalent to a phase shift by

2�/N for atomic coordinates xj. Therefore, a unique crystal

structure is given by 2N (congruent) structures: N structures

defined relative to different origins and their respective

enantiomers. An analogous definition of uniqueness

neglecting the congruence was introduced by Patterson (1944)

and it was most recently employed in the one-dimensional

case (Zimmermann & Fischer, 2009). Then, the number of

solutions is, generally, a multiple of 2N (2Nn) and the problem

is to establish n. In other words, for n = 1, the structure

obtained from the minimum of intensity data is unique, and

for n > 1 the minimum set yields n non-congruent structures.
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3. Results

3.1. Application of elementary symmetric polynomials to the
crystal structure determination problem

We define elementary symmetric polynomials eh (h = 1, 2,

. . . , N) as a sum of all possible different products of j distinct

�p, i.e.

e1 ¼
PN
j¼1

�j; ð5Þ

e2 ¼
PN

j1; j2¼1
j1>j2

�j1
�j2
; ð6Þ

eN ¼
QN
j¼1

�j: ð7Þ

We will also define the elementary symmetric polynomials

with negative subscripts as follows,

e�1 ¼
PN
j¼1

��1
j ; ð8Þ

e�2 ¼
PN

j1; j2¼1
j1>j2

�j1
�j2

� ��1
; ð9Þ

e�N ¼
QN
j¼1

�j

 !�1

: ð10Þ

Notice that for our choice of the coordinate origin [equation

(3)], eN = e�N = 1. Also, we define e0 = 1. Then we obtain

e�h ¼ eN�h; h ¼ 0; 1; . . . ;N: ð11Þ

In algebra, the relationships between the elementary

symmetric polynomials and structure factors (power sums) are

known as Newton’s identities, which can be formulated in

terms of matrix determinants (Littlewood, 1950),

Fh ¼

e1 1 0 � � �

2e2 e1 1 0 � � �

3e3 e2 e1 1

..

. . .
. . .

.

heh eh�1 � � � e1

�����������

�����������
; h ¼ 1; . . . ;N � 1: ð12Þ

By using (11) we also obtain

F�h ¼

eN�1 1 0 � � �

2eN�2 eN�1 1 0 � � �

3eN�3 eN�2 eN�1 1

..

. . .
. . .

.

heN�h eN�hþ1 � � � eN�1

�����������

�����������
; h ¼ 1; . . . ;N � 1:

ð13Þ

Now, intensity Ih (h = 1, . . . , N � 1) can be related to

symmetric polynomials as a product of the two determinants,

Ih ¼ FhF�h ¼

e1 1 0 � � �

2e2 e1 1 0 � � �

3e3 e2 e1 1

..

. . .
. . .

.

heh eh�1 � � � e1

�������������

�������������

eN�1 1 0 � � �

2eN�2 eN�1 1 0 � � �

3eN�3 eN�2 eN�1 1

..

. . .
. . .

.

heN�h eN�hþ1 � � � eN�1

�������������

�������������
:

ð14Þ

These equations form a system of N� 1 polynomial equations

for h = 1, . . . , N� 1, whose unknowns are eh . In this formalism

Newton’s identities dictate that the crystal structure of N

atoms (�j, j = 1, . . . , N) is determined from the N � 1

elementary symmetric polynomials with the smallest positive

indices by solving a univariate polynomial equation (Mac-

donald, 1979),

PN
j¼0

�1ð Þ jej �
N�j ¼ 0; ð15Þ

where e0 = 1 by definition, and eN = 1 by the choice of origin.

A corollary of the fundamental theorem of algebra is that

for a given set of eh (h = 1, 2, . . . , N � 1), the solution of

equation (15), i.e. the crystal structure, is unique. Therefore,

solving system (14) is, in essence, equivalent to determining a

crystal structure. We will then check whether different sets of

eh obtained from the intensities by solving the polynomial

system of equations (14) for h = 1, 2, . . . , N � 1 yield the same

or different structures after their substitution into equation

(15) as coefficients.

Note that all coefficients of system (14) are real; therefore,

for each eh there is a complex conjugate solution eh. This, in

turn, means that for a structure solution xj obtained from a set

of eh by using (15), there is a respective complex conjugate

solution �j. Because j�jj = 1, �j = 1=�j, i.e. eh yield the enan-

tiomer structure.

3.2. Uniqueness of the structure for N < 5

In the case N = 1, the solution is trivial and unique, x1 = 0.

The enantiomer coincides with the structure.

For N = 2, because a two-atom structure is always centro-

symmetric owing to the choice of the origin, an enantiomer

coincides with the solution. Two choices of the origin are

possible; therefore a unique structure corresponds to the only

two solutions of system (14), which in this case is just one

equation: e2
1 = I1. The two solutions are e1 =�ðI1Þ

1=2; therefore,

the structure is unique. As expected, these solutions yield the

two sets of coordinates xj phase-shifted relative to each other

by �, which is the origin shift for N = 2, as follows directly from

(15) for this case:

�2
� e1� þ 1 ¼ 0:

For N � 3, non-centrosymmetric structures are possible;

therefore, as described in the above section, a unique structure

would correspond to 2N = 6 solutions of system (14),
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I1 ¼ e1e2;

I2 ¼ e2
1 � 2e2

� �
e2

2 � 2e1

� �
:

This system yields

e6
1 �

1
2 I 2

1 þ 4I1 � I2

� �
e3

1 þ I 3
1 ¼ 0: ð16Þ

Indeed, (16) has at most six distinct solutions [sets of (e1, e2)];

therefore, the structure obtained from system (14) is unique.

The solutions can be readily obtained explicitly as equation

(16) is a quadratic in terms of e3
1. This result also implies that,

for N = 3, all intensities Ih, for h > 2, can be calculated from the

intensities from the minimum set, through polynomial rela-

tionships.

For N = 4, system (14) is

I1 ¼ e1e3;

I2 ¼ e2
1 � 2e2

� �
e2

3 � 2e2

� �
;

I3 ¼ e3
1 � 3e1e2 þ 3e3

� �
e3

3 � 3e3e2 þ 3e1

� �
: ð17Þ

Eliminating e1 and e3 yields a biquadratic equation in terms

of e2,

e4
2 3I1 � 6ð Þ þ e2

2

h
3
2 I 2

1 � I2

� �
1� I1ð Þ þ I1ðI1 � 3Þ2 � I3

i
þ 3

4 I 2
1 � I2

� �2
¼ 0; ð18Þ

and a polynomial equation of the 16th degree for e1 (not

shown). Alternatively, one can simply note that for each of the

four e2 solutions of (18) the first two equations of system (17)

yield a quartic equation in terms of e1. This results in 16 pairs

(e1, e2). e3 is determined uniquely from e1 [e.g. by using the first

equation in system (17)]. Therefore, system (17) can have at

most 16 distinct solutions [sets (e1, e2, e3)]. As shown in the

above section, 2N = 8 solutions correspond to the same

structure. Therefore, system 17 can yield at most two non-

congruent structures. We will investigate the presence of this

ambiguity for different values of the intensities I1, I2 and I3.

Note that for N = 4 the choice of the origin given by (4)

yields Im(e2) = 0. Because |xj | = 1, the choice of the origin

yields that �j�k is a complex conjugate of �p�q, where all j, k, p,

q are distinct. This directly results in Im(e2) = 0 from the

definition of e2. For I1 = 2, equation (18) becomes

e2
2 4� 3

2I2 þ I3

� �
¼ 3

4ð4� I2Þ
2: ð19Þ

Because e2 is real, 8� 3I2 þ 2I3 � 0 [or I2 � ð8þ 2I3Þ=3] and,

at most, two values of e2 can be obtained in this case. Each

value of e2 yields at most four pairs of (e1, e3), i.e. for I1 = 2, at

most eight solutions are possible. This means that for I1 = 2,

the structure obtained from the three lowest-resolution

intensities is unique.

For I1 < 2, the first coefficient of (18) is negative and,

because the third coefficient is always positive, the product of

the two solutions e2
2 is negative, by Vieta’s theorem. The

negative e2
2 does not yield a physically meaningful structure

since e2 is real. Therefore, for I1 < 2, similarly to I1 = 2, there is

at most one possible structure, i.e. there is no ambiguity.

In the last case, I1 > 2, the two solutions e2
2 are either both

positive or both negative. The latter case yields no physically

meaningful structures and the former case yields four values

of e2 and two distinct structures. By Vieta’s theorem, two

structures are possible only for ð3=2ÞðI 2
1 � I2Þð1� I1Þ +

I1ðI1 � 3Þ2 � I3 < 0 and I1 > 2. This result is also important

because it states that no more than two homometric

(excluding congruent) structures can be obtained for N = 4 in

one dimension even when one uses more than a minimum (or

even a complete) set of intensities. Examples of pairs of

homometric structures for N = 4 exist (Patterson, 1944).

Therefore, we have proven that the minimum set of intensities

is sufficient for determining this pair of homometric structures.

If the two structures determined this way are indeed homo-

metric, all intensities beyond the minimum set can be

determined from those in the minimum set, as polynomial

functions. In addition, we have proven that no more than two

homometric structures are possible for N = 4 as using more

intensities cannot increase the number of solutions. It remains

to be investigated, however, whether the two non-congruent

structures obtained from the minimum intensity set for N = 4

are always homometric.

These results indicate that a region of the intensity space

exists where a structure can be uniquely determined from the

minimal number of intensities even as N increases. Therefore,

the number of structures that can be obtained generally

depends on the structure itself, which yields these intensities.

4. Discussion

Determining a crystal structure from diffraction intensity data

has been a central problem in crystallography for almost 80

years. It has been appreciated that even a complete intensity

data set is generally insufficient for determining a structure of

N atoms unambiguously (Patterson, 1944, 1939). Direct

methods rely on a large intensity data set greatly exceeding

the number of unknown atomic coordinates, to yield a

chemically meaningful solution. Nevertheless, structures of as

many as several hundreds of atoms have been determined by

the direct methods. These successes suggest that the number of

structures that yield the same set of intensities (minimum or

not) cannot increase too fast with the increasing structure size

(N). If such number of structures always increased very

rapidly, e.g. exponentially with increasing N, then no practi-

cally obtainable set of intensities could be sufficient by N = 100

or so. Therefore this multiplicity of a crystal structure deter-

mined from intensities merits investigation. In the ideal case of

a sufficiently large number of intensities, this task is equivalent

to the difficult problem of enumeration of homometric

structures.

In order to be able to obtain a structure larger than 100

atoms directly from the intensities, one would need to use a

deterministic algebraic approach as the existing direct

methods are no longer applicable. In addition, the phase

problem generally becomes less overdetermined as the

structure size N increases, since macromolecular crystals

generally do not diffract at high resolutions normally observed

for small-molecule crystals. Nevertheless, with bright

synchrotron X-ray beam sources available today, intensity
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data sets collected on macromolecular crystals at a relatively

modest resolution (near 2 Å) are sufficiently overdetermined

so that even the data at the highest resolution of the minimum

data set are measured with little uncertainty, important for an

algebraic approach. To illustrate this point by an example from

protein crystallography, we consider a recently reported

structure of the N-terminal domain of Mycobacterium tuber-

culosis DnaB helicase determined by our group (Biswas &

Tsodikov, 2008). The structure contains N = 6697 non-H atoms

in the asymmetric unit, i.e. 3N = 20091 unknown coordinates.

The minimum set of 20090 intensities is contained within the

resolution of approximately 3 Å, considerably lower than the

refinement cutoff of 1.9 Å. At the resolution of 3 Å, the

relative uncertainty of the measured intensities is only 5%;

therefore, most of the data of the minimal intensity data set

are very well measured. Therefore the accuracy of a minimum

data set should not be a serious issue in the implementation of

an algebraic approach at resolutions that are far too low for

the direct methods. Nevertheless, the error of the intensity

measurements is expected to lead to an increase in the

ambiguity (or quasi-homometry) (Fischer et al., 2005).

Detailed studies of the stability of the structure solution

obtained from the minimum intensity data set with respect to

the experimental error in such data are yet to be carried out.

Another potential complication of an algebraic method is that

a small number of lowest-resolution intensities are not avail-

able owing to a blocked direct beam. We envision that if a

deterministic approach is developed, the missing intensities

could be used as fitting parameters of an optimization routine,

in which more than a minimum of intensities are used or the

lack of these intensity data is compensated by a few chemical

constraints, i.e. known covalent bond lengths and bond angles.

Therefore, it appears that the question of homometry is still

one of the most critical ones in addressing the feasibility of an

algebraic approach in macromolecular crystallography. We set

out to address this question starting with the simplest system

of a one-dimensional crystal of a small number of identical

atoms and a minimum of intensity data. We obtain that the

smallest structures of identical atoms, N = 2 and N = 3, are

determined uniquely (discounting the congruency) from the

minimum set of N � 1 lowest-resolution intensities. The

multiplicity begins at N = 4, where at most two solutions are

possible. This leads to important corollaries that (i) at most

two homometric structures can be obtained for N = 4 (from a

complete set of intensities!) and (ii) the minimum set of

intensities is sufficient for their determination. Interestingly, a

four-atom structure can still be uniquely determined even

from a minimum set of intensities in a certain region of the

intensity space (i.e. a structure coordinate space). This result is

important as it indicates that a unique structure can be

obtained even for larger N and for higher dimensions and that

the ambiguity need not always be overwhelming. Never-

theless, we demonstrate that the ambiguity is fundamental to

the structure determination directly from the intensity data

and should be a serious consideration in developing a practical

method of structure determination algebraically directly from

the intensities. The structure multiplicity for more complex

cases of increasing N and space dimensionality is a subject of

ongoing investigation in this group. In all the cases considered,

we reduced the structure determination problem to a uni-

variate polynomial that can be solved either by methods of

elementary algebra or by routine numerical techniques. The

method of symmetric polynomials systematically developed in

this study significantly simplifies algebraic manipulations and

holds promise for further analysis in cases when more than a

minimum set of intensities is considered and in higher

dimensions.

We are indebted to Dr Karl Fischer for his critical reading

of the manuscript and for his numerous insightful (and in

many instances eye-opening) comments and suggestions.
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